
1

Cloud Provisioning with Ansible

Content contributions by:
Bianca Henderson (@bizonks)
John Lieske (@johnlieske)
Jake Jackson (@thedoubl3j)
Sr. Product Field Engineers, Getting Started Team
Magnus Glantz (@mglantz), Senior Cloud|Infra SA

1

Magnus Glantz (@mglantz)
Senior Solution Architect

Automation context

2

Automation context: the cloud

3

4

 Computers Storage Network devices Some security Complex systems

Automation context: the cloud

5

Automation context: the cloud

6

Automation context: the cloud

7

Automation context: the cloud

8

Automation context: the cloud

9

Automation context: the cloud

10

Automation context: the cloud

11

Automation context: the cloud

“Only 12% of the
Fortune 500 firms in
1955 existed in 2015.
Close to 9/10 have
been eliminated”

12

Automation context: the cloud

Automation context: processes

13

 Provisioning Configuring Troubleshooting

Automation context: processes

14

 Provisioning Configuring Troubleshooting

Put in place
new things

Automation context: processes

15

 Provisioning Configuring Troubleshooting

Put in place
new things

Change
existing
things

Automation context: processes

16

 Provisioning Configuring Troubleshooting

Put in place
new things

Change
existing
things

Find out
why things
doesn’t
work

Automation context: processes

17

 Provisioning Configuring Troubleshooting

Ansible: what can you automate in a cloud

18

Ansible: what can you automate in a cloud

19

 Provisioning Configuring Troubleshooting

ALL THE THINGS

Ansible: what can you automate in a cloud

20

 Provisioning Configuring Troubleshooting

ALL THE THINGS
The end.

Ansible: what can you automate in a cloud

21

 Provisioning Configuring Troubleshooting

Ansible: Common complimenting tools

22

 Provisioning Configuring Troubleshooting

- Terraform
- AWS
CloudFormation
- Azure Resource
Templates
- Google Cloud
Deployment Manager

Ansible: Common complimenting provisioning tools

23

 Provisioning Configuring Troubleshooting

Often different
depending on

platform

Often the same
no matter

the platform

Often the same
no matter

the platform

Automation specifics

24

Ansible: Automation specifics: provisioning

25

 Provisioning Configuring Troubleshooting

Often different
depending on

platform

Demo: 960 VMs on AWS in seconds with Ansible

26

http://www.youtube.com/watch?v=OKc89e1-NiU

27

Ansible (2.7): Cloud related Modules
Total number of modules: 2078
Total number of cloud modules: 768
Total number of providers: 34

28

Cloud related solutions: dynamic inventories

ansible -i ec2.py all -m ping

ansible -i azure_rm.py all -m ping

ansible -i gce.py all -m ping

READ MORE: https://docs.ansible.com/ansible/2.7/user_guide/intro_dynamic_inventory.html

https://docs.ansible.com/ansible/2.7/user_guide/intro_dynamic_inventory.html

29

Cloud related solutions: inventory plugin (aws)

Fetch all hosts in us-east-1, the hostname is the public DNS if it exists, otherwise the private IP
address
plugin: aws_ec2
regions:
 - us-east-1

READ MORE: https://docs.ansible.com/ansible/2.7/plugins/inventory/aws_ec2.html

https://docs.ansible.com/ansible/2.7/plugins/inventory/aws_ec2.html

30

Cloud related solutions: inventory plugin (azure)

required for all azure_rm inventory plugin configs
plugin: azure_rm

forces this plugin to use a CLI auth session instead of the automatic auth source selection (eg,
prevents the
presence of 'ANSIBLE_AZURE_RM_X' environment variables from overriding CLI auth)
auth_source: cli

fetches VMs from an explicit list of resource groups instead of default all (- '*')
include_vm_resource_groups:
- myrg1

READ MORE: https://docs.ansible.com/ansible/2.7/plugins/inventory/azure_rm.html

https://docs.ansible.com/ansible/2.7/plugins/inventory/azure_rm.html

31

Cloud related solutions: inventory plugin (gce)

plugin: gcp_compute
zones: # populate inventory with instances in these regions
 - us-east1-a
projects:
 - gcp-prod-gke-100
 - gcp-cicd-101

READ MORE: https://docs.ansible.com/ansible/2.7/plugins/inventory/gcp_compute.html

https://docs.ansible.com/ansible/2.7/plugins/inventory/gcp_compute.html

32

Cloud related solutions: add_host

READ MORE:
https://docs.ansible.com/ansible/latest/modules/add_host_module.html

https://docs.ansible.com/ansible/latest/modules/add_host_module.html

Provisioning Azure VMs with Ansible

33

I know Microsoft, they are
the creators behind X-Box.

Make Sure Ansible is Installed

Azure CLI will need to be version 2.0.4 or later.
Run the az --version command to find the version. If the CLI command
is named azure instead of az then it’s too old.

34

Acquire Azure Credentials

For a development environment, create a credentials file for Ansible on
your Cloud Shell. First, type this command:

az ad sp create-for-rbac

35

Acquire Azure Credentials (cont.)

To find out what your subscription ID is, type in:
az account show --query "{ subscription_id: id }"

Output like this should show up; copy this information into a text file so that you can
copy/paste it later:

{
 "subscription_id": "854c5e9a-ed49-687e-bc7a-96ed7315095"
}

36

Acquire Azure Credentials (cont.)

Then, type this command in:
az ad sp create-for-rbac --query '{"client_id": appId,
"secret": password, "tenant": tenant}'

Output like this should show up:
{

 "client_id": "eec5624a-90f8-4386-8a87-02730b5410d5",

 "secret": "531dcffa-3aff-4488-99bb-4816c395ea3f",

 "tenant": "72f988bf-86f1-41af-91ab-2d7cd011db47"

}

37

Configure Ansible to Use Azure Credentials
cd ~/.azure

vi ~/.azure/credentials

Format for the credentials file:
[default]

subscription_id=<your-subscription_id>

client_id=<security-principal-appid>

secret=<security-principal-password>

tenant=<security-principal-tenant>

38

Verify the Configuration

In CloudShell, create a file named rg.yml:

vi rg.yml

Paste the code found on the next slide into the editor, keeping in mind
that the name variable underneath azure_rm_resourcegroup can be
anything you want.

39

40

Verify the Configuration (cont.)

- hosts: localhost
 connection: local
 tasks:
 - name: Create resource group
 azure_rm_resourcegroup:
 name: config-test
 location: eastus
 register: rg
 - debug:
 var: rg

41

Verify the Configuration (cont.)

Run the playbook rg.yml with the following command:

ansible-playbook rg.yml

Navigate to the Resource Groups tab on the left side of the Azure user
interface to see your newly created resource group!

42

43

Create a Complete
VM Environment in Azure

44

SSH Key

First, make sure to create an SSH key pair (if you don’t have one already)
by typing:
ssh-keygen

Copy the output from the following command:
cat ~/.ssh/id_rsa.pub

...into a text file so that you can paste it into the ssh_public_keys part of
azure_create_vm.yml

45

The Playbook

Create an Ansible playbook named azure_create_vm.yml

The following slides will show you the content that should be in that
playbook and how it works.

Note: The text in red indicate arbitrary names for things that you can
change/customize.

46

Create a Resource Group

- name: Create Azure VM

 hosts: localhost

 connection: local

 tasks:

 - name: Create resource group

 azure_rm_resourcegroup:

 name: webinar-test

 location: eastus

 register: rg

 - debug:

 var: rg
 47

Create a Virtual Network
 - name: Create virtual network

 azure_rm_virtualnetwork:

 resource_group: webinar-test

 name: webinarVnet

 address_prefixes: "10.0.0.0/16"

48

Add a Subnet to the Virtual Network
 - name: Add subnet
 azure_rm_subnet:
 resource_group: webinar-test
 name: webinarSubnet
 address_prefix: "10.0.1.0/24"
 virtual_network: webinarVnet

49

Access Resources and Assign Public IP to the VM
 - name: Create public IP address

 azure_rm_publicipaddress:

 resource_group: webinar-test

 allocation_method: Static

 name: myPublicIP

50

Create a Network Security Group
 - name: Create Network Security Group that allows SSH

 azure_rm_securitygroup:

 resource_group: webinar-test

 name: webinarNetworkSecurityGroup

 rules:

 - name: SSH

 protocol: Tcp

 destination_port_range: 22

 access: Allow

 priority: 1001

 direction: Inbound

51

Create a Virtual Network Interface Card (NIC)
 - name: Create virtual network interface card

 azure_rm_networkinterface:

 resource_group: webinar-test

 name: myNIC

 virtual_network: webinarVnet

 subnet: webinarSubnet

 public_ip_name: myPublicIP

 security_group: webinarNetworkSecurityGroup

52

Create the VM
 - name: Create VM

 azure_rm_virtualmachine:

 resource_group: webinar-test

 name: WebinarVM

 vm_size: Standard_DS1_v2

 admin_username: azureuser

 ssh_password_enabled: false

 ssh_public_keys:

 - path: /home/azureuser/.ssh/authorized_keys

 key_data: " ssh-rsa AAAAB3Nz{snip}hwhqT9h "

 network_interfaces: myNIC

 image:

 offer: RHEL

 publisher: RedHat

 sku: '7-raw'

 version: latest
53

54

55

Manage VMs in Azure Using Ansible

56

Stop a VM Using a Playbook

- name: Stop Azure VM
 hosts: localhost
 connection: local

 tasks:
 - name: Stop the virtual machine
 azure_rm_virtualmachine:
 resource_group: webinar-test
 name: WebinarVM
 allocated: no

57

58

Start a Previously Stopped VM Using a Playbook

- name: Start Azure VM
 hosts: localhost
 connection: local

 tasks:
 - name: Start the virtual machine
 azure_rm_virtualmachine:
 resource_group: webinar-test
 name: WebinarVM

59

60

Helpful Resources

GitHub Repo (with instructions):
https://github.com/Ansible-Getting-Started/Provision-Az
ure

Ansible Docs:
https://docs.ansible.com/ansible/latest/scenario_guides
/guide_azure.html

61

https://github.com/Ansible-Getting-Started/Provision-Azure
https://github.com/Ansible-Getting-Started/Provision-Azure
https://docs.ansible.com/ansible/latest/scenario_guides/guide_azure.html
https://docs.ansible.com/ansible/latest/scenario_guides/guide_azure.html

AWS Cloud Provisioning with Ansible

I know Amazon.
It’s where I get my books.

Requirements:

● AWS credentials (Access Key ID + Secret Access Key)

● Install AWS boto Python module:
https://docs.ansible.com/ansible/latest/scenario_guides/
guide_aws.html

● Ansible 2.6+ and git

● git clone https://github.com/mglantz/ansible-aws

Creating Credentials

1. Log into your AWS account, go to your user in Identity and Access Management.
2. Navigate to Security Credentials. Click “Create Access Key. You should receive something

like:

3. Copy ansibe-aws/vars/vars-example.yml to ansible-aws/vars/vars.yml and enter in the
access key id and secret access key.

Access Key ID: PDMQMTIB1L1LGTFO2
Secret Access Key: 0SILWO5DSJ6IN8OJF8UZ3PQ2FKU

Creating Key Pair

1. Log into your AWS account, go to your user in EC2 Management Console.
2. Scroll to “Key Pairs” (grouped under Network & Security). Click “Create Access Key. You will

be asked a name.
3. Download the key pair to the project directory and run ssh-add ./name-of-key.pem

Variables
Variables for the playbook

vars/vars.yml

ec2_access_key: the-access-key-id
ec2_secret_key: secret-key
ec2_key: name-of-your-key
ec2_region: eu-central-1 # AWS region
ec2_security_group_vms: arbitary-name-of-security-group
ami_id: ami-c86c3f23 # AMI ID for RHEL 7.5 in eu-central-1. Can be replaced with what you want.
number_of_systems: 1 # Number of systems to spin up

Creating the security group (deploy-server.yml)
Creates incoming and outgoing security rules

➢ Uses key pair we created previously
➢ Uses the variables out of the vars/vars.yml file
➢ We only allow incoming SSH traffic and allow all

outgoing traffic
➢ Review the parameters on the module index:

https://docs.ansible.com/ansible/latest/modules/ec2_mod
ule.html

https://docs.ansible.com/ansible/latest/modules/ec2_module.html
https://docs.ansible.com/ansible/latest/modules/ec2_module.html

Creating VMs (deploy-server.yml)
Creates the virtual machine

➢ Uses key pair we created previously
➢ Uses the variables out of the vars/vars.yml file
➢ The instance here has t2.micro specified (it is the free

tier level).
➢ We store data from the VM creation, things such as IP

in ec2micro, then use that to add all public IPs to an
in-memory inventory for usage in further plays

➢ Review the parameters on the module index:

https://docs.ansible.com/ansible/latest/modules/ec2_mod
ule.html

https://docs.ansible.com/ansible/latest/modules/ec2_module.html
https://docs.ansible.com/ansible/latest/modules/ec2_module.html

Print debug and wait (deploy-server.yml)
Print IPs of all VMs created and wait until they boot up

➢ Loops through all created VMs and waits for them to
be reachable via SSH

➢ After this, you may add your own play and use the
previously created in-memory inventory or the
dynamic inventory available in inventory/ec2.py

Run the playbook (deploy-server.yml)

$ cd ansible-aws
$ ansible-playbook -i inventory/ec2.py -u ec2-user deploy-server.yml

You deserve
a demo.

Links

Ansible AWS demo: https://github.com/mglantz/ansible-aws

https://github.com/mglantz/ansible-aws

Google Cloud Provisioning with Ansible

I know Google.
They know what I’m looking for.

Requirements
● The Google Cloud Platform (GCP) modules require both the

requests and the google-auth libraries to be installed. (Can be
installed via pip)

● Credentials (Service account or machine accounts)

● Ansible v 2.6 (for the particular modules I will talk about)

Credentials
● Service Account (JSON) or Machine Account

● JSON Credentials Recommended

Creating JSON Credentials

● Open the Cloud Platform Console Credentials page.
● If it's not already selected, select the project that you're creating

credentials for.
● To set up a new service account, click New credentials and then select

Service account key.
● Choose the service account to use for the key.
● Choose whether to download the service account's public/private key

as a standard P12 file, or as a JSON file that can be loaded by a Google
API client library.

Using the Credentials with Ansible

● Specifying them directly as module parameters

● Setting environment variables

Module Parameters

vars:
 service_account_file: /home/my_account.json
 project: my-project
 auth_kind: serviceaccount
 scopes:
 - www.googleapis.com/auth/compute

Setting them as Environment Variables

GCP_AUTH_KIND
GCP_SERVICE_ACCOUNT_EMAIL
GCP_SERVICE_ACCOUNT_FILE
GCP_SCOPES

The Good Stuff… Creating Instances

● New Modules under the naming scheme “gcp_*”

● Using the new GCP modules found in 2.6.x

The Top Level
- name: Create an instance
 hosts: localhost
 gather_facts: no
 connection: local
 vars:
 project: my-project
 auth_kind: serviceaccount
 service_account_file: /home/my_account.json
 zone: "us-central1-a"
 region: "us-central1"

Creating the Disk
tasks:
 - name: create a disk
 gcp_compute_disk:
 name: 'disk-instance'
 size_gb: 50
 source_image:
'projects/ubuntu-os-cloud/global/images/family/ubuntu-1604-lts'
 zone: "{{ zone }}"
 project: "{{ gcp_project }}"
 auth_kind: "{{ gcp_cred_kind }}"
 service_account_file: "{{ gcp_cred_file }}"
 scopes:
 - https://www.googleapis.com/auth/compute
 state: present

register: disk

Creating the Network
- name: create a network
 gcp_compute_network:
 name: 'network-instance'
 project: "{{ gcp_project }}"
 auth_kind: "{{ gcp_cred_kind }}"
 service_account_file: "{{ gcp_cred_file }}"
 scopes:
 - https://www.googleapis.com/auth/compute
 state: present
 register: network

Creating an Address

- name: create a address
 gcp_compute_address:
 name: 'address-instance'
 region: "{{ region }}"
 project: "{{ gcp_project }}"
 auth_kind: "{{ gcp_cred_kind }}"
 service_account_file: "{{ gcp_cred_file }}"
 scopes:
 - https://www.googleapis.com/auth/compute
 state: present
 register: address

Creating the VM
 - name: create a instance
 gcp_compute_instance:
 state: present
 name: test-vm
 machine_type: n1-standard-1
 disks:
 - auto_delete: true
 boot: true
 source: "{{ disk }}"
 network_interfaces:
 - network: "{{ network }}"
 access_configs:
 - name: 'External NAT'
 nat_ip: "{{ address }}"
 type: 'ONE_TO_ONE_NAT'
 zone: "{{ zone }}"
 project: "{{ gcp_project }}"
 auth_kind: "{{ gcp_cred_kind }}"
 service_account_file: "{{ gcp_cred_file }}"
 scopes:
 - https://www.googleapis.com/auth/compute
 register: instance

Helpful Links

https://docs.ansible.com/ansible/latest/scenario_guides/guide_gc
e.html

https://docs.ansible.com/ansible/latest/modules/list_of_cloud_mo
dules.html#google

https://support.google.com/cloud/answer/6158849?hl=en&ref_top
ic=6262490#serviceaccounts

https://docs.ansible.com/ansible/latest/scenario_guides/guide_gce.html
https://docs.ansible.com/ansible/latest/scenario_guides/guide_gce.html
https://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#google
https://docs.ansible.com/ansible/latest/modules/list_of_cloud_modules.html#google
https://support.google.com/cloud/answer/6158849?hl=en&ref_topic=6262490#serviceaccounts
https://support.google.com/cloud/answer/6158849?hl=en&ref_topic=6262490#serviceaccounts

Overview of getting things done in Cloud

1. There are dependencies, such as a CLI or library which
implements the cloud API

2. You need to fetch credentials to an account beforehand, try to
limit the access of the account due to security concerns

3. Playbooks required to create assets in cloud are simple :-)

I could easily do this myself

